Search results for "rotational spectrum"
showing 10 items of 12 documents
Exotic SiO(2)H(2) Isomers: Theory and Experiment Working in Harmony.
2016
Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. …
Rotational spectrum and equilibrium structure of silanethione, H2SiS
2008
Unsubstituted silanethione, H(2)Si=S, has been characterized experimentally for the first time by means of rotational spectroscopy; the equilibrium structure of this fundamental molecule has been evaluated through a combination of experimental data from a total of ten isotopologues and results of high-level coupled-cluster calculations.
The rare isotopomers of HCN: HC15N and DC15N. Rotational spectrum and resolved nuclear hyperfine structures due to 15N and D.
2005
In the present work the J + 1 ← J rotational transitions, with J = 0-7, of HC15N and the J + 1 ← J rotational transitions, with J = 0-7, 9, of DC15N have been investigated. The Lamb-dip technique has been employed in order to resolve the hyperfine structure due to deuterium and 15N. For HC15N, the hyperfine parameters have been determined for the first time. With respect to DC15N, only the spin rotation of 15N have been determined for the first time but a more reliable spin rotation of D has been obtained. The experimental evaluation of the hyperfine constants has been aided by highly accurate ab initio computations. Furthermore, the rotational transitions observed allowed us to provide the…
Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.
2011
Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 A and rSi-S = 1.9133 A) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected fi…
The rotational spectrum of 17O2 up to the THz region
2016
Abstract The investigation of the pure rotational spectrum of the 17O2 isotopic species of molecular oxygen has been extended with respect to previous investigations to the submillimeter-wave region, from 230 GHz up to 1.06 THz. The resulting spectroscopic parameters, which have an accuracy comparable to that of the constants obtained from an updated isotopic invariant fit involving data for three electronic states and six isotopologues [Yu et al. High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, bandconstants, RKR potentials, Franck–Condon factors involving the X 3 Σ g − , a 1 Δ g , and b 1 Σ g + states. J Chem Phys 2014;141:174302/1–12], permit the prediction…
The magnetic hyperfine structure in the rotational spectrum of H2CNH
2010
Abstract The hyperfine structure in the ground-state rotational spectrum of methanimine was studied in the frequency range of 64–172 GHz by means of the Lamb-dip technique. This allowed to resolve, in some hyperfine components due to the 14N nucleus, doublets separated by only some tenth of kHz. We explain the splittings as due to magnetic interactions of the three protons with their molecular environment. The analysis of the experimental spectrum has been guided by quantum-chemical calculations of the hyperfine parameters.
Rare isotopic species of hydrogen sulfide: the rotational spectrum of H236S
2014
The rotational spectrum of the 36 S-bearing isotopologue of hydrogen sulfide (H2S) has been investigated for the first time in the 167 GHz−1.6 THz frequency range, thus providing an accurate and reliable set of spectroscopic parameters. The experimental investigation was backed up by state-of-the-art quantum-chemical calculations, which also allowed us to demonstrate the incorrectness of the previously reported spectroscopic constants. The present results are of suitable accuracy to attempt the astrophysical detection of the isotopic species under consideration. Finally, reliable predictions for the spectroscopic constants of other rare isotopologues of H2S, namely the mono- and bi-deuterat…
The ground state rotational spectrum of SO2F2
2003
Abstract The analysis of the ground state rotational spectrum of SO 2 F 2 [K. Sarka, J. Demaison, L. Margules, I. Merke, N. Heineking, H. Burger, H. Ruland, J. Mol. Spectrosc. 200 (2000) 55] has been performed with the Watson’s Hamiltonian up to sextic terms but shows some limits due to the A and S reductions. Since SO 2 F 2 is a quasi-spherical top, it can also be regarded as derived from an hypothetical XY 4 molecule. Thus we have developed a new tensorial formalism in the O (3)⊃ T d ⊃ C 2 v group chain (M. Rotger, V. Boudon, M. Loete, J. Mol. Spectrosc. 216 (2002) 297]. We test it on the ground state of this molecule using the same experimental data (10 GHz–1 THz region, J up to 99). Bot…
The hyperfine structure in the rotational spectrum of water: Lamb-dip technique and quantum-chemical calculations
2009
Seven ortho rotational transitions have been recorded for the main isotopic species of water in the mil- limeter- and submillimeter-wave region using the Lamb-dip technique in order to resolve the hyperfine structure due to the hydrogens and to provide accurate hyperfine constants. The experimental determi- nation has been supplemented by high-level quantum-chemical calculations of the hyperfine parameters thereby focusing in particular on a systematic study of the basis-set convergence and on vibrational effects.
The rotational spectrum of trans-DCOOD: Lamb-dip measurements, THz spectroscopy and quantum-chemical calculations
2011
Abstract The rotational spectrum of the bi-deuterated isotopologue of trans-formic acid, trans-DCOOD, was recorded at sub-Doppler resolution in the millimeter- and sub-millimeter-wave region using the Lamb-dip technique. The hyperfine structure due to the deuterium nuclei could be resolved and accurate hyperfine constants were derived. The experimental determination of the deuterium quadrupole-coupling constants was supported by high-level quantum-chemical calculations at the coupled-cluster level using large atomic-orbital basis sets. The Lamb-dip measurements were also supplemented by THz Doppler-limited measurements in order to extend the predictive capability of the available spectrosco…